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Understanding how populations adapt to constantly changing

environments requires approaches drawn from integrative and

evolutionary biology as well as population ecology. Timing of

reproduction and migration reflect seasonal pulses in

resources, are driven by day length, and are also responsive to

environmental cues that change with climate. Researchers

focusing on birds have discovered accelerated breeding,

reductions in migration, and extensive variation in perception,

transduction, and response to the environment. We consider

situations in which individuals experience the same

environment but differ in the timing of the annual cycle. Such

scenarios provide exceptional opportunities to study

mechanisms related to among-population differences in timing

(allochrony) and distribution (sympatry–allopatry–heteropatry),

which have the potential either to enhance or reduce population

divergence and biodiversity.
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Introduction
The urgency of environmental change coupled with the

availability of new technology is transforming our under-

standing of phenomena that have fascinated biologists for

generations: changing seasons, seasonal shifts in behavior

and morphology, and remarkable feats of migration. The

last decade has seen an explosion of studies into seasonal

timing that seek to identify how changing climates are

altering the biology of seasonally breeding organisms [1].

Emerging patterns in avian populations throughout the

northern hemisphere include earlier breeding for many
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but not all species [1–3]. Migratory timing by birds has

also been affected by warming [2,4–6]. Some species have

shortened their migrations or ceased migrating altogether

[4,7]. A related but distinct body of research has sought to

elucidate the role of timing in phenotypic and genetic

divergence among populations (see Table 1). Theoretical

and empirical studies continue to challenge the view that

speciation requires geographic isolation, and one focus

has been to consider circumstances under which timing

differences (allochrony) can give rise to reproductive

isolation [8]. Studies of birds, plants, insects, fish, and

bats have revealed among-population differences in tim-

ing that are interrupting gene flow, potentially leading to

speciation [8–12].

Seasonal timing and population divergence
This contribution addresses how seasonality in the environ-
ment and timing of events of the annual cycle relate to popula-
tion divergence by focusing on mechanisms of reproductive

and migratory timing in birds. Working from the premise

that selection acts on mechanisms that vary among indi-

viduals and populations and employing concepts and

methods from three subfields, seasonality, evolutionary

endocrinology, and geographic variation/population di-

vergence, we briefly summarize what is new in the timing

of reproduction and migratory biology as learned from

intensive and prolonged study of individual bird species

in the wild and in captivity.

Variation in timing within and among
populations
It is almost a truism that members of a population

experiencing the same environment will nevertheless

differ among themselves in when they reproduce. De-

spite exposure to nearly identical day length, food supply,

temperature, moisture, etc., some individuals breed early

and some breed later. While some of this variation can

surely be attributed to age or condition, individuals are

also known to be consistently early or late owing to their

underlying biological timing.

The existence of this individual variation presents an

outstanding opportunity to study mechanisms mediating

timing and how they respond to selection. Early and late

breeders can be compared for response to a particular day

length, patterns of gene expression, sequence differences

in candidate genes, systemic variation in perception–
transduction–response to environmental cues [13], and
www.sciencedirect.com
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Table 1

Recent studies of avian systems addressing integration of timing and population divergence by employing measurements of gene

expression, endocrine correlates of reproductive and migratory behavior, selection gradients, sequence variation in candidate genes,

geographic variation in genetic structure and in timing, and variation in urban versus wildland populations.

Study system Approaches/references

Great tits

Parus major

� Gene expression differences among populations that differ in latitude, following photoperiod

treatment [63]

� Candidate genes in relation to timing of breeding within a population, including selection
analysisa [64]

� Longitudinal studies of selection on endocrine correlates of timing of breeding within a

population [65]

� Divergence in timing of breeding among urban versus wildland populations in relation to

artificial light [66]

Great and Blue Tits � Integration of candidate gene and quantitative genetic approaches [67]

Blue tits

Cyanistes caeruleus

� Candidate genes for timing of breeding within-pops. and among-pops. across latitude [68,69]

� Endocrine correlates of timing among closely related populations inhabiting different localized

climates

� Longitudinal studies of selection on timing of breeding within and among populations [70]

� Divergence in timing among urban versus wildland populations in relation to artificial lighting

[66]

European blackbirds

Turdus merula

� Common garden studies of timing of breeding and migration (Zugunruhe), including endocrine

correlates in urban versus wildland populations [71–74]

� Loss of migration and neutral genetic divergence among multiple urban versus wildand

populations [75]

� Candidate genes for timing and others traits among multiple urban versus wildland population

pairsa [76]

� Divergence among urban versus wildland populations in timing in relation to artificial lighting

[66]

Blackcaps

Sylvia atricapilla

� Candidate genes for migratory distances among (and within) populations [77]

� Artificial selection (disruptive), leading to loss of migratory propensity [4]

� Ecological mechanisms (eco-morphology) in relation to divergence in migratory populations

across latitude [78]

� Divergence in timing of (migratory) arrival and breeding phenology among sympatric cohorts,

including analyses of neutral genetic divergence [79,80]

Barn swallows

Hirundo rustica

� Analysis of neutral genetic divergence among variably migratory populations across latitude/

longitude [11]

� Candidate (Clock) genes in relation to timing of breeding, migration, life-history and molt, within

and among populations, including longitudinal studies of selection [81,82]

� Loss of migratory behavior (shifts northwards) in relation to climatic warming [83]

Dark-eyed junco

Junco hyemalis

� Endocrine correlates of divergence in timing of breeding in urban versus wildland populations

also inhabiting distinct localized climates, including common garden studies [84,85�]

� Loss of migration in an urban versus wildand populations, including common garden

approach (Zugunruhe)

� Candidate genes for migratory distance within-populations and among-populations across

latitude and urban versus wildlanda [86]

� Common garden for timing of breeding across latitude, incl. endocrine correlates in seasonal

sympatry [87]

� Gene expression in relation to divergence in timing and migratory strategy across latitude and

urban versus wildlandb

White-crowned sparrow

Zonotrichia leucophrys

� Divergence in reproductive timing, migratory strategies, and life-history among closely related

populations and subspecies, including endocrine correlates of divergence [88,89] c

� Experimental studies of seasonal gene expression in relation to altered photoperiod and

hormonal conditions [90]

Pied Flycatcher

Ficedula hypoleuca

� Longitudinal studies of selection on candidate genes and neutral genetic divergence within

and among populations across latitude/longitude [91�]

� Candidate genes (Clock, ADCYAP1) in relation to timing of migration among individuals during

migration [92] a

Florida scrub-jay

Aphelocoma coerulescens

� Endocrine correlates in relation to divergence in timing among urban versus wildland

populations, including evaluation of ecological mechanisms [93]
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Table 1 (Continued )

Study system Approaches/references

Rufous-collared sparrows

Zonotrichia capensis

� Divergence in timing (asynchrony) and neutral genetic divergence among two adjacent

equatorial populations inhabiting different localized climates [94], including studies of endocrine

correlates

Stonechats

Saxicola spp.

� Common garden for timing of breeding and migration (Zugunruhe) among populations across

latitude [95]

� Cross-breeding to evaluate fitness consequences of reproductive timing in ‘hybrid’ pairs

[95,96]

Seabirds � Neutral genetic divergence and timing of breeding differences within and among island

populations in sympatry [12]

� Ecological mechanisms (habitat specialization, non-breeding segregation) underlying

allochrony in sympatry [97]

� Ecological mechanisms (energetics) in relation to divergent migratory strategy and allochrony

under sympatry [98]

a These studies chiefly report negative results (i.e. lack of associations).
b Current research in progress by A. Fudickar et al.
c Also see ongoing research by M. Ramenofsky and Z. Németh.
fitness consequences of early and late reproduction.

The same environmental cue might be stimulatory

for some individuals and not for others at a different

life-history stage and a critical question is why. In mice,

individual variation in circadian rhythms was recently

found to relate to distinct expression patterns of a key

‘clock’ gene, PER2, within the suprachiasmatic nucle-

us, the ‘master circadian oscillator’ [14]. It is probable

that endogenous circadian rhythms influence seasonal

photoperiodic timing decisions. Thus individual varia-

tion in timing mechanisms and responses to environ-

mental cues may be influenced by photoperiodic

history, history with other cues [14,15] and by genetic

inheritance [16].

These comparisons can also be made across populations

of the same species that differ in timing of reproduction.

High latitude or high altitude populations, for example,

often breed later, providing natural comparisons. Inter-

pretation of these comparisons is challenging, however,

because so many factors may contribute to differences

observed. Spring may come later at higher latitudes, but

obviously so many other aspects of ecology differ as well.

Species consisting of sedentary and migratory popula-

tions that co-exist for portions of the year make it possible

to study the mechanisms underlying timing of reproduc-

tion and migration. Cross-population comparisons of

systemic physiology and gene expression in organisms

experiencing the same environment become accessible.

Such situations also make it possible to examine how

within-population variation might alter gene flow and

give rise to among-population variation and thus popula-

tion divergence.

Kevin Winker applied the term heteropatry to capture

situations of ‘seasonal sympatry, seasonal allopatry,’ in
Current Opinion in Behavioral Sciences 2015, 6:50–58 
which migrants and residents winter together in sympat-

ry, but owing to the departure of migrants, breed in

allopatry [1,17]. In such cases, residents typically initiate

reproduction while migrants are still present, creating

opportunities for hybridization that may or may not be

realized. An important question is how such differences in

timing in the same environment affect the likelihood of

gene flow between migrants and residents. Do migrants

mate with residents and give rise to ill-adapted young or

do differences in timing prevent hybridization?

Timing of reproduction and migration and
biodiversity
Comparisons of migrant and sedentary forms of the same

species also raise the question of how migration-induced

allopatry will respond to climate change and influence

biodiversity. Future changes in animal movements may

alter current patterns of overlap. If the tendency to

migrate declines, such that currently allopatric breeding

populations become sympatric, then opportunities for

gene flow between migrant and sedentary forms may

increase, leading to the merging of incipient species [18]

and resulting in loss of nascent biodiversity. In other

situations climate warming may lead to longer not shorter

migrations, for example by migrants that currently breed

at high altitudes. Finding favorable conditions for breed-

ing that are currently achieved by flying uphill in spring

may require a northward shift in latitude before breeding.

Conversely, if formerly migratory forms become resident

in portions of the breeding range from which they used to

retreat, then populations that were sympatric in winter

may now become allopatric year-round, reducing gene

flow, reinforcing population divergence, and enhancing

diversity. Combined study of mechanisms of timing,

changes in animal movements, and niche modeling will

contribute to predictions of the impact of environmental

change on biodiversity.
www.sciencedirect.com
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We turn now to selected advances related to determinants

of when to breed and when to migrate as they bear on how

seasonality in the environment and timing of the events of the
annual cycle relate to population divergence.

When to breed?
Multiple reviews of selective consequences of within-

population variation in timing have appeared recently

[19–21]. In some cases, researchers have shown that

breeding is taking place earlier in warm springs, that

earlier breeding is leading to higher reproductive success,

and that breeding dates are heritable. Researchers are also

addressing how mechanisms of response to the environ-

ment relate to phenological change [13,22,23]. Neverthe-

less, much remains to be learned about how mechanisms

related to timing of reproduction vary among individuals

and populations.

Onset of seasonal reproductive physiology and behavior

has traditionally been studied as a response to seasonal

changes in photoperiod (recently reviewed extensively

[24��]), but photoperiod and other measures of the exter-

nal environment (e.g. food, temperature, etc.) cannot

account for how individuals and populations experiencing

the same immediate environment exhibit variation in

how they respond. Early and late breeders within a

population, and heteropatric populations that overwinter

together but breed separately are prime subjects for

addressing internal mechanisms by asking where varia-

tion lies at the level of the organism, particularly where

variation lies along the reproductive hypothalamo–pitui-

tary–gonadal (HPG) axis.

One of many potential sources of within-population and

among-population variation is the interaction between

stress reactivity and onset of reproduction. We have long

known that individuals vary in how they prepare for and

respond to ‘stressors’ [25,26], and that stress can dampen

the activity of the HPG axis [27]. Thus, a prime candidate

accounting for within-population and among-population

variation in timing is how stressors interact with the HPG

during the critical window for timing decisions. Individuals

with greater stress reactivity could be favored under certain

environmental change scenarios, while individuals with

lower stress reactivity could be favored under other sce-

narios [28]. Despite significant heritable variation in the

avian stress response [29], all levels of the hypothalamo–
pituitary–adrenal (HPA) axis can be altered during devel-

opment, resulting in variations in adult phenotypes [30].

Resident bird species prepare for reproduction by altering

the functioning of the HPA which releases corticosterone

(CORT), a glucocorticoid that is one of the primary

contributors to the stress response [31]. In house sparrows

(Passer domesticus) glucocorticoid receptor (GR) expres-

sion varies seasonally and a recent paper showed that GR

binding in the brain is at its highest in the pre-egg laying
www.sciencedirect.com 
period, suggesting a greater sensitivity to CORT during

this critical timing window [32].

Another way in which ‘stress reactivity’ may interact with

the reproductive axis is via release and response to the

neuropeptide, gonadotropin-inhibitory hormone (GnIH),

which is expressed in the paraventricular nucleus (PVN)

of the hypothalamus. GnIH is capable of down regulating

activity of the HPG axis via binding with receptors on the

pituitary, and, potentially, via direct influence on GnRH

neurons in the hypothalamus (reviewed in [20]). GnIH

cells possess glucocorticoid receptors, and treatment with

CORT increases GnIH mRNA expression [33�]. Further,

when norepinephrine, another signaling molecule that

relates to stress, is injected into the PVN, quail increase

GnIH mRNA transcription and GnIH release [34].

In addition to potential influence at the levels of the

hypothalamus and pituitary, glucocorticoids may directly

influence the ability of the gonads to respond to the

gonadotropins produced by the pituitary [35]. Testes of

photosensitive European starlings (Sturnus vulgaris) stim-

ulated with LH/FSH in vitro increase testosterone pro-

duction, but this production is significantly diminished if

CORT is also administered [36�]. However, when admin-

istered to fully mature testes, CORT fails to decrease

testosterone secretion when compared to administration

with LH/FSH alone. Food restriction or limiting

resources would be predicted to delay the onset of repro-

duction. Administration of the drug 2-deoxyglucose (2-

DG), a glucose analog inhibiting glycolysis, thus inducing

a metabolic ‘stress,’ has been shown to upregulate GnIH

expression in the ovaries [36�], suggesting a way in which

resource availability might influence timing of reproduc-

tion. These studies indicate that individual/population

variation in ‘stress reactivity’ may be a strong target for

investigations of how timing differences may arise in the

same environment. In populations that migrate, repro-

duction is delayed until migration has been accom-

plished. Thus another key question that is still almost

entirely unanswered is how the mechanisms that time

reproduction interact with those mediating migration.

One recent paper provides new evidence that the path-

ways are independent and may be subject to distinct

regulation [37].

When to migrate?
Returning to our objective of how seasonality in the envi-
ronment and timing of the events of the annual cycle relate to
population divergence, we turn to new developments in

migratory timing in birds where rapid advances are taking

place owing to new technology.

Increasingly miniaturized geolocators, GPS loggers, satel-

lite transmitters and other tracking devices deployed at

breeding or wintering sites allow measurements of depar-

ture dates, migratory direction, duration and speed, and
Current Opinion in Behavioral Sciences 2015, 6:50–58
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destination of migrations (for review of tracking tech-

nology see [38]). Recent advances in methods for

interpreting intrinsic markers, such as stable isotopes

and genetic markers, are adding to our knowledge of

how breeding and wintering ranges of migratory species

are connected [39–42], including the recent application

of large numbers of genomic (SNP) markers [43].

Additionally, carefully coordinated and standardized

citizen-generated  databases (e.g. Cornell’s Feeder-

Watch program) are providing invaluable information

about the phenology and geography wild species in

unprecedented ways [44,45].

An important challenge is to relate these increasingly

precise measurements of migratory geography and phe-

nology in the wild to the mechanisms that regulate

timing. Monitoring (or manipulating) hormones before

migration is fostering correlative and experimental

approaches for exploring the regulation of migration

[46,47,48�]. Further, studies of traditional measures of

migratory readiness in caged migrants (fattening and

nocturnal activity, referred to as migratory preparation)

continue to be informative.

Recent studies investigating the links between early

activation of the HPG in preparation for reproduction

and migration have identified a role for testosterone in

both. Experimental elevation of testosterone in captive

migratory gray catbirds (Dumetella carolinensis) induced

earlier spring migration [49], and early elevation of

testosterone before departure supported both migratory

and breeding preparation in free-living American Red-

starts [48�]. However, testosterone alone is not

sufficient for full expression of spring migration be-

cause castrated male white-crowned sparrows (Zonotri-
chia leucophrys gambelii) supplemented with testosterone

fail to exhibit full migratory restlessness in spring

[50].

Increased food consumption and nocturnal activity char-

acterize migrant birds during the season of migration and

have been associated with seasonal elevation in baseline

levels of the adrenal steroid corticosterone (CORT)

[51,52]. However the pattern is not consistent across

all species [53], and experimentally altering the HPA

has had inconsistent effects on migratory preparations

[54,55].

Circulating levels of melatonin decrease in nocturnal

migrants during the season of migration, suggesting that

a reduction in melatonin may help to induce nocturnal

activity [56,57]. However, experimental elevation of mel-

atonin does not reduce nocturnal activity in migrating

garden warblers (Sylvia borin) during stopover [58]. Indi-

viduals that had higher nighttime melatonin had greater

diurnal activity and reduced body mass, indicating that

nighttime melatonin [58].
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Mechanisms as constraint
Reproduction and migration have traditionally been

viewed as distinct stages with little to no overlap in time

or neuroendocrine control mechanisms [21,59]. However,

newer findings reveal that preparation for spring migra-

tion and reproduction overlap in time and are tightly

linked in mechanism [49,50,60]. An issue of controversy

is the degree to which one life-history stage (migration)

imposes a constraint on the ability of the other

(reproduction) to respond independently to selection.

For example, recent studies monitoring changes in timing

of spring migration and reproduction have found that as

one advances in response to changes in climate, so does

the other [6,61��], which is consistent with constraint. In

White-crowned Sparrows exposed to green light during

days that are long enough to stimulate gonadal growth if

light is full spectrum exhibit migratory preparedness but

not gonadal growth [37]. And a recent modeling paper

[62], reports that variation among species in length of the

breeding season and timing of pulses of resources needed

for breeding predict circumstances under which migrato-

ry and reproductive timing can evolve independently and

that existing data are consistent with the model’s predic-

tions. How reproductive and migratory timing respond to

selection is fundamental to determining the role of timing

(allochrony) in population divergence.

Conclusion
We conclude by referring the reader to Table 1, which

contains a sampling of recent studies from 13 avian systems

addressing integration of timing and population diver-

gence. Collectively these studies serve as examples of

what can be learned from examining the organismal and

evolutionary mechanisms that facilitate population-level

divergence in reproductive and migratory timing using a

range of approaches including: measurements of gene

expression, endocrine correlates of reproductive and mi-

gratory behavior, selection gradients, sequence variation in

candidate genes, geographic variation in genetic structure

and in timing, and comparisons of urban versus wildland

populations. As systems are added and more methods are

applied to already studied systems, the role of timing

mechanisms in promoting or reducing gene flow and

population divergence will become clearer. Areas particu-

larly deserving of more study include the impact of timing

mechanisms on mate preferences, the role of early devel-

opmental environments on the expression of migratory and

reproductive timing in adults, and the interaction of mech-

anisms that time migration and reproduction. Ultimately

predicting short and longer-term responses to environmen-

tal change will require greater knowledge of where varia-

tion in timing mechanisms currently resides among

individuals and across populations. In time we will learn

what changes when a migrant becomes a resident and vice

versa, which will represent a major advance in our under-

standing of animal migrations.
www.sciencedirect.com
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Mije S, Töpfer T, Päckert M: Differentiation in neutral genes and
a candidate gene in the pied flycatcher: using biological
archives to track global climate change. Ecol Evol 2013, 3:4799-
4814.

Leveraging both the sampling of extant populations and long-term
archives of DNA from preserved (museum) tissue, this study took an
innovative approach to using candidate (Clock) and neutral genetic
markers to evaluate how genetic differentiation may have proceeded
in relation to climate change and/or local adaptation. They report
evidence for stabilizing (as opposed to directional) selection on
Clock, as well as a general pattern of greater genetic variation in
relation to space versus time, suggesting that local adaptation may be
a stronger evolutionary force than recent global climate change in this
system.

92. Saino N, Bazzi G, Gatti E, Caprioli M, Cecere JG, Possenti CD,
Galimberti A, Orioli V, Bani L, Rubolini D et al.: Polymorphism at
the Clock gene predicts phenology of long-distance migration
in birds. Mol Ecol 2015, 24:1758-1773.

93. Schoech SJ, Rensel MA, Bridge ES, Boughton RK, Wilcoxen TE:
Environment, glucocorticoids, and the timing of reproduction.
Gen Comp Endocrinol 2009, 163:201-207.

94. Moore IT, Bonier F, Wingfield JC: Reproductive asynchrony and
population divergence between two tropical bird populations.
Behav Ecol 2005, 16:755-762.
Current Opinion in Behavioral Sciences 2015, 6:50–58

http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0810
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0810
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0810
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0815
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0815
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0815
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0820
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0820
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0820
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0825
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0825
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0825
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0825
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0830
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0830
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0830
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0830
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0835
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0835
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0835
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0835
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0840
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0840
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0840
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0840
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0840
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0845
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0845
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0845
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0850
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0850
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0850
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0855
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0855
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0855
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0860
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0860
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0860
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0865
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0865
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0865
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0865
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0865
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0870
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0870
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0870
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0875
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0875
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0875
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0880
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0880
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0880
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0885
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0885
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0885
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0890
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0890
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0890
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0890
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0890
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0895
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0895
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0895
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0895
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0895
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0900
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0900
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0900
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0900
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0905
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0905
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0905
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0905
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0905
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0910
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0910
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0910
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0910
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0910
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0915
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0915
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0915
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0915
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0920
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0920
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0920
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0920
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0920
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0920
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0930
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0930
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0930
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0930
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0935
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0935
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0935
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0940
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0940
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0940
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0940
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0945
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0945
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0945
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0945
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0945
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0950
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0950
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0950
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0950
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0955
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0955
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0955
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0960
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0960
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0960


58 Integrated study of animal behavior
95. Helm B: Geographically distinct reproductive schedules in a
changing world: costly implications in captive Stonechats.
Integr Comp Biol 2009, 49:563-579.

96. Helm B: Zugunruhe of migratory and non-migratory birds in a
circannual context. J Avian Biol 2006, 37:533-540.

97. Rayner MJ, Hauber ME, Steeves TE, Lawrence HA, Thompson DR,
Sagar PM, Bury SJ, Landers TJ, Phillips RA, Ranjard L et al.:
Current Opinion in Behavioral Sciences 2015, 6:50–58 
Contemporary and historical separation of transequatorial
migration between genetically distinct seabird populations.
Nat Commun 2011, 2:332.

98. Fort J, Steen H, Strom H, Tremblay Y, Gronningsaeter E, Pettex E,
Porter WP, Gremillet D: Energetic consequences of contrasting
winter migratory strategies in a sympatric Arctic seabird duet.
J Avian Biol 2013, 44:255-262.
www.sciencedirect.com

http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0965
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0965
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0965
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0970
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0970
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0975
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0975
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0975
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0975
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0975
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0980
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0980
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0980
http://refhub.elsevier.com/S2352-1546(15)00117-5/sbref0980

	Seasonal timing and population divergence: when to breed, when to migrate
	Introduction
	Seasonal timing and population divergence
	Variation in timing within and among populations
	Timing of reproduction and migration and biodiversity
	When to breed?
	When to migrate?
	Mechanisms as constraint
	Conclusion
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


